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Abstract

Vibrating beam gyroscopes are fast becoming the most widely used gyroscopes in many commercial applications. This

paper deals with a vibrating beam gyroscope consisting of a cantilever beam with rigid mass attached to its end and

undergoing coupled flexural–torsional vibrations. The gyroscope can be used to measure the angular velocity of the

rotating base of the beam. The primary (flexural) vibrations are produced in the beam using a piezoelectric patch (bender

type) actuator. Due to the base rotation, a gyroscopic effect is generated which induces secondary (torsional) vibrations in

the beam. First, a detailed mathematical modeling of the system is developed using extended Hamilton’s Principle. The

system governing equations are solved and simulated using assumed mode model expansion to analyze the gyroscopic

coupling produced due to the base rotations. Finally, the effects of secondary base rotation (cross-axis effects) on the

performance of the gyroscope are presented. Also, it is shown that the gyroscopic effect increases with increase in base

rotation rate, primary excitation amplitude and length of the beam. It is further proven that the secondary base rotations

(cross-axis effects) have an adverse effect on the gyroscope performance. Such detailed analysis on the effects of secondary

rotation can be utilized to devise elimination strategies in order to improve gyroscopic performance.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Gyroscope is the most commonly used device for measuring angle of rotation or rate of angular rotation in
many applications ranging from automobile stability control to inertial navigation. Based on the operating
principle, gyroscopes can be divided into three different categories: (i) spinning mass gyroscopes; (ii) optical
gyroscopes; and (iii) vibrating mass gyroscopes. Vibrating mass gyroscopes are the most commonly used
existing gyroscopes. They consist of a vibrating mass, which is driven in a primary direction, and attached to a
rotating base. In presence of the angular motion of the base, a secondary vibration is induced in the
vibrating mass due to the Coriolis effect. By measuring this secondary vibration, the rate of rotation can be
determined [1].

Various vibrating elements such as tuning forks, shells, rings and beams are used in vibrating mass
gyroscopes [2]. A vibrating beam gyroscope consists of a cantilever beam attached to a moving base as shown
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

aX ; aY ; aZ base vectors in X -, Y - and Z-axes,
respectively

ax; ay; az base vectors in x-, y-and z-axes, respec-
tively

b; bM width of the beam and end mass,
respectively

CB;CT viscous damping coefficient in bending
and torsion, respectively

d31 piezoelectric constant of the piezoelec-
tric actuator

E Young’s modulus of elasticity
EIb;EIp flexural rigidity of the beam and piezo-

electric actuator, respectively, about
Y -axis

f b band width
G shear modulus of elasticity
GJb;GJp torsional rigidity of the beam and

piezoelectric actuator, respectively
hM Height of the end mass
HðxÞ heaviside function
Ixb; Iyb; Izb mass moments of inertia of the beam

cross-section about X -, Y -and Z-axes,
respectively

Ixp mass moments of inertia of the piezo-
electric layer about X-axis

IxM ; IyM ; IzM mass moments of inertia of the end
mass about X -, Y - and Z-axes, respec-
tively

l1; l2 distance of start and end of piezoelectric
layer to clamped end of the beam

L; lM length of the beam and the end mass,
respectively

M end mass magnitude

Mpðx; tÞ piezoelectric actuator moment
pjðtÞ; qjðtÞ generalized coordinates
R transformation matrix
r position vector
t time
tb; tp thickness of the beam and actuator,

respectively
T kinetic energy
uðx; tÞ axial deflection of the beam
vðx; tÞ lateral deflection of the beam
V potential energy
VpðtÞ voltage applied to piezoelectric actuator
wðx; tÞ bending deflection of the beam
Wnc non-conservative work
fjðxÞ jth mode shape in bending
yðx; tÞ torsional deflection of the beam
z1j jth flexural damping ratio of the beam
z2j jth torsional damping ratio of the beam
rb; rp volumetric densities of the beam and

actuator, respectively
x angular velocity vector of a beam

element about x; y and z axes,
x ¼ fox;oy;ozg

T

o1j jth flexural natural frequency of the
beam

o2j jth torsional natural frequency of the
beam

X base rotational frequency vector,
X ¼ fO1;O2 ¼ 0;O3g

T

O1 secondary rotation
O3 primary rotation
Omin resolution frequency
cðx; tÞ bending slope of the beam

ð¼ qwðx; tÞ=qxÞ

CjðxÞ jth mode shape in torsion
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in Fig. 1. A flexural vibration is induced in the beam using piezoelectric actuators placed on the beam (drive
mode). In presence of the base rotation about the longitudinal axis, the Coriolis force causes secondary flexural
vibrations (sense mode) in the beam normal to the drive mode vibrations. By measuring these secondary
vibrations using the sensors placed on the beam, the rate of rotation can be consequently determined [3].

In this paper, a second type of vibratory beam gyroscope is considered in which a cantilever beam with a
rigid mass attached to its end is subjected to a combination of flexural–torsional vibrations. The operating
principle of this gyroscope is very similar to the flexural–flexural vibrating beam gyroscope. A flexural
vibration (drive mode) is induced in the beam using piezoelectric actuators placed on the surface of the beam,
as shown in Fig. 2. In the presence of the angular rotation of the base about Z-axis, secondary torsional
vibrations (sense mode) are induced in the beam due to the Coriolis force. The secondary vibrations are
proportional to the rate of rotation of the beam. The rate of rotation can be determined by measuring these
secondary vibrations. The effect of the end mass (not shown in Fig. 2) is to improve the performance of the
gyroscope by increasing the gyroscopic effect.
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Fig. 1. Schematic of a flexural–flexural vibrating beam gyroscope.
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Fig. 2. Schematic of flexural–torsional beam gyroscope.
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If the base rotates around the Z-axis only, the measurement of the angular rate will be accurate. In practice,
however, the base of the gyroscope is subjected to some secondary rotations as well (e.g. rotation about the
longitudinal axis), which can produce significant errors, called as ‘cross-axis’ effects, in the measurement of the
primary angular velocity. These secondary vibrations are one of the major sources of error in the vibrating
beam gyroscopes [3].

Due to its practical importance in various applications, many researchers have worked on the problem of
coupled bending-torsion vibrations of cantilever beams. Timoshenko and Young [4] developed the theory of
coupled flexural–torsional vibrations of thin walled beams and obtained the exact modal solutions. Dokumaci
[5] obtained the coupled free vibration frequencies of a cantilever beam. Bercin and Tanaka [6] also studied the
coupled flexural–torsional vibrations of beams including warping, shear deformation and rotary inertia
effects. Banerjee [7] developed a dynamic stiffness matrix analysis method to obtain the natural frequencies
and mode shapes of the coupled Euler–Bernoulli beam. Almost all of these works did not consider the effect of
tip mass. Goel [8] and Laura et al. [9] modeled the tip load as point mass using the Euler–Bernoulli beam
theory. Bhat and Wagner [10] performed a detailed analysis to develop the frequency equations of a cantilever



ARTICLE IN PRESS
V. Bhadbhade et al. / Journal of Sound and Vibration 311 (2008) 1305–13241308
beam with tip mass. A more recent attempt to examine the free vibration of a flexible beam with rigid
payloads at the tip was made by Kirk and Wiedemann [11]. They used the Euler–Bernoulli theory,
but the effect of torsion was not considered. Oguamanam [12] investigated a cantilever beam with a rigid
tip mass, whose center of gravity was not coincident with the attachment point. Gokdag and
Kopmaz [13] extended the work of Oguamanam by analyzing the coupled flexural–torsional free and forced
vibrations of a beam with tip and in span attachments. Most of these works involve the analysis of the
cantilever beam when the base is stationary. Recently, Esmaeili, Durali and Jalili in a series of publications
[14–16] have studied the flexural–flexural vibrating beam gyroscope with tip mass and subjected to general
support motion.

In this paper, detailed equations of motion and boundary conditions governing the coupled flexural–
torsional vibrations of a cantilever beam with rigid mass attached to its free end and subjected to general base
rotations are derived. The gyroscopic effect produced in the beam due to the base rotation is investigated.
These gyroscopic terms in fact produce the coupling between flexural and torsional modes. Previous papers
have analyzed the flexural–torsional coupling in a cantilever beam produced due to the asymmetric nature of
the end mass or offset between centroid and shear center of the beam cross-section. Moreover, the beam
excitation is done using a piezoelectric patch which makes the equations more complex. This configuration has
not been dealt with before. Furthermore, the effects of undesirable secondary rotations on the system response
are analyzed. By studying the effects of secondary rotations, proper elimination strategies can be devised to
improve gyroscope performance.

2. Mathematical modeling

In this section, two linear partial differential equations governing the flexural–torsional motion of the beam
are developed. The extended Hamilton’s Principle is used to derive the equations of motion. The beam is
assumed to follow the Euler–Bernoulli theory and accordingly the effects of warping and shear deformation
are neglected. The beam is considered to be a slender type (with small thickness to length ratio).

A schematic of the beam with rigid mass attached is shown in Fig. 3. The beam is considered to be a uniform
and straight metallic cantilever beam with length L and mass per unit length rðxÞ. A rigid tip mass M of finite
dimensions ðlM ; bM ; hMÞ is attached at the right end of the beam. Inertial coordinate system is denoted by
ðA1;A2;A3Þ. The moving (rotating) coordinate system is denoted by (X ;Y ;ZÞ with orthogonal unit vectors
ðaX aY aZÞ. Primary bending vibrations wðx; tÞ are produced in the beam by a piezoelectric actuator attached
on the beam surface. The base is subjected to two angular rotations: (i) the primary rotation O3—which is to
be measured by the gyroscope and (ii) the secondary rotation O1—which causes errors in the measurement of
primary rotation. Due to the primary rotation O3 (about the Z-axis), secondary torsional vibrations yðx; tÞ are
induced in the beam.
lM
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hM

Ω3

Ω1

Mr

Z

Y

u

P*

X

LA3

A1
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Fig. 3. Cantilever beam kinematics.
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2.1. Beam kinematics (translational motion)

As a result of base motion, each point on the neutral axis undergoes an elastic deformation and a rotation.
To describe the translational motion of the beam a Cartesian vector u ¼ fu v wgT (with three variables defined
as: u1 ¼ u is axial u2 ¼ v is lateral and u3 ¼ w is bending deformation) measured in moving coordinate system
ðX ;Y ;ZÞ are used. Point P on the neutral axis of beam is moved to point P�. The position and velocity of
point P� in reference frame fAig can be expressed as [14]

rp� ¼ rp þ up�, (1)

dðrp�Þ

dt
¼

dðup�Þ

dt
þX� ðrp þ up�Þ; rp ¼ saX ; up� ¼ uaX þ vaY þ waZ. (2)

In Eq. (2), X ¼ fO1;O2 ¼ 0;O3g
T is the rotation vector of the base relative to the reference frame ðA1;A2;A3Þ

and s is the position of point P in the moving coordinate system. In this case, the beam has no axial and lateral
vibrations, hence u ¼ 0 and v ¼ 0. By simplifying the vector products used in Eq. (2), the velocities of point P�

can be reduced to

dðrp�Þ

dt
¼ f aX þ gaY þ haZ, (3)

where

f ¼ 0; g ¼ �wO1 þ sO3; h ¼
qw

qt
. (4)

Consequently, the translational kinetic energy of the beam is given as

T1 ¼
1

2

Z L

0

rbðf
2
þ g2 þ h2

Þdx. (5)

As the mass is attached at the end of the beam, similar procedure is followed to calculate the translational
kinetic energy of the mass. Position and velocity of the center of gravity of the mass are given as

rM ¼ rq þ uq� þ rm, (6)

dðrM Þ

dt
¼

dðuq�Þ

dt
þ

dðrmÞ

dt
þ O� ðrq þ uq� þ rmÞ, (7)

where q is the point of attachment of the end mass to the beam with rq ¼ LaX , q� is the deformed position of
point q, and rm is the position vector of center of gravity of the end mass from point q� in the deformed
position given as (see Fig. 4)

rm ¼
lM

2
coscLaX þ

lM

2
sincLaZ, (8)

where cL ¼ qw=qxjx¼L.
By further simplifying, the velocity of end mass can be written as

dðrMÞ

dt
¼ f MaX þ gMaY þ hMaZ, (9)

where

f M ¼ �
lM

2
sincL

qcL

qt
,

gM ¼ O3L� O1wL þ O3
lM

2
coscL � O1

lM

2
sincL,
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Fig. 5. Euler angle rotations of the beam cross-section.

lM

Ω3

Ω1

Z

Y

X 

LA3

A1

q**

qr

u

M

rm

A2

hM

Fig. 4. End mass kinematics.
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hM ¼
qwL

qt
þ

lM

2
coscL

qcL

qt
, (10)

and wL ¼ wðx; tÞjx¼L.
Assuming small deflections and ignoring nonlinear terms yields

f M ¼ 0,

gM ¼ O3L� O1wL þ O3
lM

2
� O1

lM

2
cL,

hM ¼
qwL

qt
þ

lM

2

qcL

qt
. (11)

Hence, the translational kinetic energy of the end mass is given as

T1M ¼
1
2
Mðf 2

M þ g2
M þ h2

M Þ. (12)

2.2. Beam kinematics (rotational motion)

The deformation of the system from its original configuration is described here using Euler angles (similar to
Ref. [17]). As shown in Fig. 5, ðX ;Y ;ZÞ denote the rotating coordinate system with orthogonal unit vectors
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ðaX ; aY ; aZÞ. The local curvilinear coordinate system at arclength s in the deformed position is denoted by
ðx; y; zÞ, with orthogonal unit vectors ðax; ay; azÞ.

In general, each cross-section of the beam experiences an elastic displacement of its neutral axis and a
rotation. The displacement components are already discussed in the previous section. The rotation of the
neutral axis, from the undeformed to the deformed position, is described using successive counterclockwise
Euler-angle rotations with the angle of rotations denoted, in the order of rotation, by cðx; tÞ and yðx; tÞ as
shown in Fig. 5, where cðx; tÞ ¼ qwðx; tÞ=qx.

The first rotation, c about Y-axis, takes (X ;Y ;Z) coordinate system to (x0; y0 ¼ Y ; z0). The second rotation,
y about x0-axis, takes (x0; y0; z0) to the final orientation (x ¼ x0; y; z). The three unit vector triads are related to
each other in the following manner:

ax

ay

az

8><
>:

9>=
>; ¼ ½Ry�

ax0

ay0

az0

8><
>:

9>=
>; ¼ ½Ry�½Rc�|fflfflfflffl{zfflfflfflffl}

R

aX

aY

aZ

8><
>:

9>=
>;, (13)

where

½Ry� ¼

1 0 0

0 cos y sin y

0 � sin y cos y

2
64

3
75; ½Rc� ¼

cosc 0 � sinc

0 1 0

sinc 0 cosc

2
64

3
75, (14)

½R� ¼

cosc 0 � sinc

sin y sinc cos y sin y cosc

cos y cosc � sin y cos y cosc

2
64

3
75. (15)

The transformation matrices ½Ry�, ½Rc� and ½R� are orthogonal or unitary matrices, and hence possess the
property ½R��1 ¼ ½R�T. On the other hand, the angular velocity of the beam is given as

x ¼ O1aX þ O3aZ þ
qc
qt

aY þ
qy
qt

ax. (16)

The absolute angular velocity x of the principle axis system (x; y; z) can be obtained using Eqs. (14)–(16) as
follows:

x ¼
qy
qt
þ O1 cosc� O3 sinc

� �
ax þ

qc
qt

cos yþ O1 sin y sincþ O3 sin y cosc
� �

ay

þ �
qc
qt

sin yþ O1 cos y sincþ O3 cos y cosc
� �

az. ð17Þ

Assuming small angles of bending and torsion, the components of the absolute angular velocity of the beam
can be given as

ox ¼
qy
qt
þ O1 � O3c

� �
,

oy ¼
qc
qt
þ O1ycþ O3y

� �
,

oz ¼ ðO1cþ O3Þ. (18)

The rotational kinetic energy of the beam and end mass is therefore given as follows:

T2 ¼
1

2

Z L

0

ðIxbo2
x þ Iybo2

y þ Izbo2
zÞdx, (19)

T2M ¼
1
2
ðIxMo2

x þ IyMo2
y þ IzMo2

zÞ, (20)
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where Ixb; Iyb; Izb and IxM ; IyM ; IzM are the mass moments of inertia of the beam and end mass, about the X -,
Y - and Z-axes, respectively.

2.3. Governing equations of motion

In this section, the extended Hamilton Principle is used to derive the two partial differential equations of
motion governing the flexural–torsional vibrations. The extended Hamilton Principle for a dynamic system is
stated as Z t2

t1

fdT � dV þ dWncgdt ¼ 0, (21)

where T is the total kinetic energy of the system, V is the total potential energy and Wnc is the total non-
conservative work done on the system. Ignoring the rotary inertia terms, the total kinetic energy of the system
is given as

T ¼
1

2

Z L

0

½rðxÞðf 2
þ g2 þ h2

Þ þ IxðxÞo2
x�dxþ

1

2
Mðf 2

M þ g2
M þ h2

MÞ

þ 1
2
ðIxMo2

x þ IyMo2
y þ IzMo2

zÞ. ð22Þ

The total potential energy of the system can also be written as

V ¼
1

2

Z L

0

EIyðxÞ
q2w
qx2

� �2

þ GJðxÞ
qy
qx

� �2
" #

dx, (23)

where

rðxÞ ¼ ðrb þ SðxÞrpÞ; IxðxÞ ¼ ðIxb þ SðxÞIxPÞ,

EIyðxÞ ¼ ðEIb þ SðxÞEIPÞ; GJðxÞ ¼ ðGJb þ SðxÞGJPÞ,

SðxÞ ¼ Hðx� l1Þ �Hðx� l2Þ, (24)

and EIb and EIp are the flexural rigidities of the beam and piezoelectric actuator, respectively, GJb and GJp

are the torsional rigidities of the beam and piezoelectric actuator, respectively, and HðxÞ is the Heaviside
function.

In the Hamiltonian approach, the piezoelectric actuator control moment Mp and the damping effects are
collected in the following virtual work expression [18]

dWnc ¼
1

2

Z L

0

q2Mp

qx2
dwdxþ CB

Z L

0

qw

qt
dwdxþ CT

Z L

0

qy
qt

dydx, (25)

where

Mp ¼ �
1
2

bEpd31ðtb þ tpÞV pðtÞSðxÞ ¼Mp0V pðtÞSðxÞ. (26)

Substituting Eqs. (22)–(26) into Eq. (21), the equations of motion and boundary conditions can be derived as
follows (detailed derivation of equations of motion and boundary conditions are given in Appendix A):

rðxÞ
q2w
qt2
� wO2

1 þ xO1O3

� �
þ CB

qw

qt
� IxðxÞO3

q2y
qtqx
þ O3

q2w
qx2

� �

þ
q2

qx2
EIyðxÞ

q2w

qx2

� �� �
¼

q2Mp

qx2
, ð27Þ

IxðxÞ
q2y
qt2
þ O3

q2w
qtqx

� �
þ CT

qy
qt
�

q
qx

GJðxÞ
qy
qx

� �� �
¼ 0, (28)
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wjx¼0 ¼ 0;
qw

qx

����
x¼0

¼ 0; yjx¼0 ¼ 0, (29)

IxðxÞ
qy
qt
þ O1 � O3

qw

qx

� �����
x¼L

O3 þM �O3 Lþ
lM

2

� �
þ O1 wþ

lM

2

qw

qx

� �� �����
x¼L

O1

�M
q2w
qt2
þ

lM

2

q3w
qt2qx

� �����
x¼L

þ EIyðxÞ
q3w

qx3

� �����
x¼L

¼ 0, ð30Þ

M �O1
lM

2
�

lM

2

q2w
qt2
þ

lM

2

q3w
qt2qx

� �����
x¼L

� �
þ IxM

qy
qt
þ O1 � O3

qw

qx

� �����
x¼L

O3

� IyM

q3w
qt2qx

þ O1
qy
qt
þ O3

qy
qt

� �����
x¼L

þ IyM

q2w
qtqx
þ O1y

qw

qx
þ O3y

� �����
x¼L

O1yL

� IzM O1
qw

qx
þ O3

� �����
x¼L

O1 � EIyðxÞ
q2w
qx2

� �����
x¼L

¼ 0, ð31Þ

� IxM
q2y
qt2
� O3

q2w

qtqx

� �����
x¼L

þ IyM
q2w
qtqx
þ O1y

qw

qx
þ O3y

� �����
x¼L

O1
qw

qx

����
x¼L

� IyM

q2w

qtqx
þ O1yL

qw

qx
þ O3y

� �����
x¼L

O3 � GJðxÞ
qy
qx

� �����
x¼L

¼ 0, ð32Þ

and yL ¼ yðx; tÞjx¼L.
In Eqs. (27)–(32), O3 is the primary base rotation velocity that is to be measured using the vibrating beam

gyroscope. The secondary base rotation (O1Þ is considered here to analyze the cross-axis effects produced due
to the presence of such secondary rotations. Hence, for simplification, O1 is ignored for further analysis. It will
be included in the later sections of the paper. By ignoring O1 in Eqs. (27)–(32), the equations of motion and
boundary conditions can be simplified to

rðxÞ
q2w
qt2
þ CB

qw

qt
� IxðxÞO3

q2y
qtqx
þ O3

q2w
qx2

� �
þ

q2

qx2
EIyðxÞ

q2w
qx2

� �� �
¼

q2Mp

qx2
, (33)

IxðxÞ
q2y
qt2
þ O3

q2w

qtqx

� �
þ CT

qy
qt
�

q
qx

GJ
qy
qx

� �� �
¼ 0, (34)

wjx¼0 ¼ 0;
qw

qx

����
x¼0

¼ 0; yjx¼0 ¼ 0, (35)

IxðxÞ
qy
qt
� O3

qw

qx

� �����
x¼L

O3�M
q2w
qt2
þ

lM

2

q3w

qt2qx

� �����
x¼L

þ EIyðxÞ
q3w

qx3

� �����
x¼L

¼ 0, (36)

M �
lM

2

q2w
qt2
þ

lM

2

q3w
qt2qx

� �����
x¼L

� �
þ IxM

qy
qt
� O3

qw

qx

� �����
x¼L

O3 � IyM

q3w
qt2qx

þ O3
qy
qt

� �����
x¼L

� EIyðxÞ
q2w

qx2

� �����
x¼L

¼ 0, ð37Þ

�IxM

q2y
qt2
� O3

q2w
qtqx

� �����
x¼L

� IyM

q2w
qtqx
þ O3y

� �����
x¼L

O3 � GJðxÞ
qy
qx

� �����
x¼L

¼ 0. (38)

As seen from Eqs. (33) and (34), the system governing equations are coupled through the base rotation
velocity O3. The base rotation gives rise to the gyroscopic terms such as IxO3ðq

2y=qtqxÞ and IxO3ðq
2w=qtqxÞ,

causing dynamic coupling between the two vibration modes proportional to the rate of rotation. In the
absence of the base rotation, the governing equations become decoupled.
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3. Frequency equation derivations

In this section, frequency equations are derived similar to Ref. [12]. Assuming harmonic motion with
frequency o, the solutions of the equations of motions can be represented in the following form:

wðx; tÞ ¼ LPðxÞeiot; yðx; tÞ ¼ QðxÞeiot, (39)

where PðxÞ and QðxÞ are the amplitudes of the sinusoidally varying vertical displacement and torsional
rotation, respectively. Furthermore, a set of non-dimensional parameters can be introduced for simplifying the
mathematical analysis. These parameters are defined as follows:

k ¼
x

L
; la ¼

lM=2

L
; l4 ¼

rbL4o2

EI
; g2 ¼

EIb

GJb

,

m2 ¼
J

btbL2
; Mt ¼

M

rbL
and tij ¼

I ij

rbL3
i; j ¼ x; y; z. (40)

Notice that the effect of flexural and torsional rigidities variation along the beam length is assumed to be
negligible (only for the purpose of deriving the frequency equation), that is, EIyðxÞ ¼ EIb and GJðxÞ ¼ GJb.

Substituting Eqs. (39) and (40) into Eqs. (33)–(38) yields the following set of non-dimensional equations of
motion and boundary conditions:

PIV þ
IxbL2O2

3

EI

� �
P00 � ðl4ÞPþ IxbO3iLl

2

ffiffiffiffiffiffiffiffiffiffiffi
1

rbEI

s !
Q0 ¼ 0, (41)

Q00 þ
Ixbl

4g2

rbL4

� �
Q� IxbO3il2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

GJrbL4

s !
P0 ¼ 0, (42)

Pð0Þ ¼ 0; P0ð0Þ ¼ 0; Qð0Þ ¼ 0, (43)

IxbiO3l
2

ffiffiffiffiffiffiffiffiffiffiffi
1

rbEI

s !
Qð1Þ þ

IxbL2O2
3

EI
þ l4Mtla

� �
P0ð1Þ þ l4Mt

� �
Pð1Þ þ P000ð1Þ ¼ 0, (44)

ðl2iO3ð
ffiffiffiffiffiffiffi
txx

p
ax þ

ffiffiffiffiffiffi
tyy
p

ayÞÞQð1Þ þ ðl
4Mtl

2
a þ l4tyyÞP

0ð1Þ þ ðl4Mtla þ a2xO
2
3ÞPð1Þ � P00ð1Þ ¼ 0, (45)

l4g2txx

L
þ b2yO

2
3

� �
Qð1Þ � l2igO3

ffiffiffiffiffiffiffi
txx

L

r
bx þ

ffiffiffiffiffiffiffi
txx

L

r
by

� �� �
P0ð1Þ �Q0ð1Þ ¼ 0, (46)

where

ax ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
LIxM

EI

r
; ay ¼

ffiffiffiffiffiffiffiffiffiffiffi
LIyM

EI

r
; bx ¼

ffiffiffiffiffiffiffiffi
IxM

EI

r
; by ¼

ffiffiffiffiffiffiffiffi
IyM

EI

r
, (47)

and i ¼
ffiffiffiffiffiffiffi
�1
p

. In the above equations, ðÞ0 represents the derivative with respect to spatial variable x. Based on the
boundary conditions identified by Eq. (43), the solution to the governing equations (Eqs. (41)–(42)) can be written as

PðkÞ ¼ A1ðsinðlkÞ � sinhðlkÞÞ þ A2ðcosðlkÞ � coshðlkÞÞ, (48)

QðkÞ ¼ B1 sinðl
2gkÞ. (49)

These equations are now substituted into the remaining boundary conditions (Eqs. (44)–(46)) to obtain a set of
equations which can be written in the matrix notation as

A3�3X3�1 ¼ 0, (50)

where X ¼ ½B1 A1 A2�
T is the column vector of the coefficients of the general solutions (Eqs. (48) and (49)).

The frequency equation can now be obtained by equating the determinant of matrix A to zero. Along with the
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various geometric parameters such as beam dimensions, tip mass dimensions and magnitude of the tip mass,
the determinant of the matrix A is also a function of base rotation velocity O3 and the non-dimensional
natural frequency l. The frequency equation may be written as

detðAÞ ¼ f ðGeometry;O3; lÞ ¼ 0. (51)

The frequency equation given by Eq. (51) is too lengthy to be given here. It can be shown that it reduces to
that of a clamped-free beam undergoing planar bending vibrations by putting O3 ¼ 0, Mt ¼ 0 and
txx ¼ tyy ¼ 0, or that of a clamped-tip mass beam by letting O3 ¼ 0 and txx ¼ tyy ¼ 0.

To analyze the effect of base rotation on the non-dimensional natural frequencies of the systems, various
values of base rotation rate within the interval of 0–70 rad/s are considered. Fig. 6 shows the variation of the
first two natural frequencies as the rate of angular rotation is varied. The physical properties of the beam and
the tip mass used for these simulations are given in Table 1. It can be seen that the natural frequencies of the
system increase, although slightly, as the base rotation rate increases. This was expected as the base rotation
induces geometrical stiffening in beams and results in increasing all the frequencies. However, for the base
rotation rates considered in this paper (0–70 rad/s) and the physical parameters taken here (Table 1), the first
two natural frequencies did not change significantly. For all practical purposes and for the subsequent
simulations and analysis, the fundamental frequencies of a cantilever beam undergoing bending and torsion
λ1

λ2

Base rotationrate, Ω3 (rad/sec)
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Fig. 6. Variation of beam non-dimensional natural frequency ðlÞ with base rotation rate ðO3Þ.

Table 1

Physical parameters of the system

Properties Symbol Value Unit

Beam length L 0.15 m

Beam thickness tb 0:8� 10�3 m

Beam width b 1:5� 10�2 m

Beam density rb 3960 kg/m3

Beam elastic modulus E 70 GPa

Beam shear modulus G 30 GPa

End mass width bM 0.02 m

End mass height hM 0.02 m

End mass length lM 0.02 m

First flexural damping ratio z11 1 %

Second flexural damping ratio z12 0.16 %

First torsional damping ratio z21 1 %

Second torsional damping ratio z22 0.33 %
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with a rigid mass attached to its end, but without the base rotation, can be safely used for the case in which the
base of the beam is rotating.

4. Numerical simulations and results

For numerical simulations, the assumed mode model (AMM) expansion is used to truncate the original
partial differential governing equations of motion to that of ordinary differential equations [3,18,19]. Using
the AMM method, the lateral displacement w and torsional displacement y are assumed as linear functions of
assumed modes and generalized coordinates as

wðx; tÞ ¼
Xn

j¼1

fjðxÞpjðtÞ,

yðx; tÞ ¼
Xn

j¼1

cjðxÞqjðtÞ, (52)

where fjðxÞ and cjðxÞ are the mode shapes of a cantilever beam (with no base rotation and rigid mass) under
bending and torsion, respectively; and pjðtÞ and qjðtÞ are the generalized coordinates for bending and torsion,
respectively. The mode shapes used for this case are given as

fðxÞ ¼ ðsin bnx� sinh bnxÞ � anðcos bnx� cosh bnxÞ, (53)

cðxÞ ¼ sin
2nþ 1ð Þpx

2L

	 

, (54)

where

an ¼
sin bnL� sinh bnL

cos bnLþ cosh bnL

� �
and b4n ¼

rbo
2
1n

EIb

. (55)

Although the cantilever beam is subjected to a base rotation and it has a rigid mass attached to its end, the mode
shapes for a regular cantilever beam (with no base rotation and rigid mass) are used. The mode shapes given by
Eqs. (53) and (54) satisfy only the geometric boundary conditions for the beam (Eq. (29)) but they do not satisfy
the natural boundary conditions (Eqs. (30)–(32)). Hence, these mode shapes are rather admissible functions.

Using these admissible functions does not significantly affect the results due to the following reasons: (i) the
base rotation rates considered in this paper (0–70 rad/s) do not considerably change the natural frequencies of
the beam. Hence, the mode shapes for the beam without any base rotations can be safely used and (ii) the
mode shapes for the cantilever beam with a rigid mass attached to its end are very complicated. Since the main
aim is to analyze the gyroscopic effect in the beam, for simplifying the analysis, the end mass can be neglected.
This is a valid simplifications since fðxÞ and cðxÞ are admissible functions. Using these admissible functions
does not significantly alter the results as the generalized coordinates pjðtÞ and qjðtÞ in Eq. (52) change
accordingly to give correct response for wðx; tÞ and yðx; tÞ.

The governing equations of motion can now be obtained by substituting Eq. (52) into Eqs. (33)–(34) as follows:

M1 €pðtÞ þ CB _pðtÞ þ C1 _qðtÞO3 þ ðK1 þD1O2
3ÞpðtÞ ¼ F1,

M2 €qðtÞ þ CT _qðtÞ þ C2 _pðtÞO3 þ K2qðtÞ ¼ 0, ð56Þ

where

M1ij ¼

Z L

0

rðxÞfiðxÞfjðxÞdx; C1ij ¼

Z L

0

IxðxÞfiðxÞc
0
jðxÞdx,

K1ij ¼

Z L

0

EIðxÞf00i ðxÞf
00
j ðxÞdx; D1ij ¼

Z L

0

IxðxÞfiðxÞf
00
j ðxÞdx,

F1i ¼Mp0V pðtÞ½f
0
iðl2Þ � f0iðl1Þ�,
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M2ij ¼

Z L

0

IxðxÞciðxÞcjðxÞdx; C2ij ¼

Z L

0

IxðxÞciðxÞf
0
jðxÞdx,

K2ij ¼

Z L

0

GJðxÞc0iðxÞc
0
jðxÞdx; i; j ¼ 1; 2; . . . ; n,

CBij ¼ 2z1io1j for i ¼ j and CBij ¼ 0 for iaj,

CTij ¼ 2z2io2j for i ¼ j and CTij ¼ 0 for iaj,

p ¼ fp1; p2; . . . ; png
T; q ¼ fq1; q2; . . . ; qng

T.

Equations of motion, given by Eq. (56), are solved for first two modes using MATLAB and system parameters
given in Table 1. The number of modes in AMM expansion was selected based on the beam natural
frequencies, range of piezoelectric excitation frequency and base rotational rates.

4.1. System response to base rotations

As explained earlier, the gyroscopic coupling in the system is obtained when the beam is subjected to base
rotation. Fig. 7 shows the torsional output (gyroscopic coupling) from the system when it is subjected to base
rotation of constant angular velocity. It should be noticed that in order to provide response with higher
amplitude, the excitation frequency is chosen close to first flexural natural frequency. Therefore, beating
phenomenon is observed in all the results. As seen from Fig. 7(b), the output in the sense direction is zero when
the base of the beam is stationary ðO3 ¼ 0Þ. This shows that in the absence of base rotation, there is no
gyroscopic coupling present in the system. As seen from Figs. 7(d) and (f), the amplitude of the sense direction
doubles ð0:01520:3mradÞ as the base rotation velocity increases from 20 to 40 rad/s; but without any increase
in the drive direction amplitude. This demonstrates that, as the magnitude of the base rotation increases, due
to the corresponding increase in the gyroscopic coupling, secondary (torsional) vibrations also increase
proportionally. Hence, it can be concluded that the amplitude of the secondary torsional vibrations is directly
proportional to the magnitude of the base rotation and in the absence of base rotation, the gyroscope does not
produce any secondary output. This is an important conclusion as it proves the effectiveness of this type of
gyroscope as a device for measuring base angular velocity [22].

4.2. System response to input excitations

Fig. 8 shows the variation of system output (gyroscopic effect) with change in the excitation amplitude. The
beam is excited with different piezoelectric voltages at constant base rotation velocity ðO3 ¼ 20 rad/sÞ. It is clearly
seen that the gyroscopic effect is a function of the amplitude of primary excitation. When the primary excitation is
zero, gyroscopic effect is not produced and there are no secondary vibrations (as shown in Fig. 8(a–b)). As the
excitation amplitude increases, the torsional output of the system increases proportionally.

4.3. System response to varying beam length

The gyroscopic effect produced by this type of gyroscope is also a function of the length of the cantilever
beam. If the length of the beam increases, the amplitude of the primary (flexural) vibrations increases. This
increase in the primary amplitude produces a corresponding increase in the secondary output (gyroscopic
coupling). Fig. 9 shows the variation in the system output (gyroscopic effect) with change in the length of the
beam. Length of the beam is varied from 0.15 to 0.25m while keeping all other parameters (i.e., angular
velocity of the base rotation, piezoelectric excitation voltage) constant. As seen from the figure, the drive
direction as well as the sense direction amplitudes increase as the length of the beam increases.

4.4. Resolution study

In this section, sensitivity of the presented gyroscope is investigated. Refs. [20,21] are utilized in order to
study the sensitivity of the system. Since w represents the primary motion which is produced due to



ARTICLE IN PRESS

0 0.2 0.4 0.6 0.8 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time (s)

B
en

di
ng

 D
ef

le
ct

io
n 

(m
m

)

0 0.2 0.4 0.6 0.8 1

Time (s)

0 0.2 0.4 0.6 0.8 1

Time (s)

0 0.2 0.4 0.6 0.8 1

Time (s)

0 0.2 0.4 0.6 0.8 1

Time (s)

0 0.2 0.4 0.6 0.8 1

Time (s)

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

T
or

si
on

al
 D

ef
le

ct
io

n 
(µ

 r
ad

)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

B
en

di
ng

 D
ef

le
ct

io
n 

(m
m

)

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

T
or

si
on

al
 D

ef
le

ct
io

n 
(µ

 r
ad

)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

B
en

di
ng

 D
ef

le
ct

io
n 

(m
m

)

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

T
or

si
on

al
 D

ef
le

ct
io

n 
(µ

 r
ad

)

Sense Direction Sense Direction Sense Direction

Drive DirectionDrive Direction Drive Direction
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piezoelectric actuation, the secondary motion (yÞ is driven due to coupling of flexural and torsional vibrations.
Sensitivity is defined as the ratio of variations of secondary (induced gyroscopic) motion with respect to
variations of primary rotation. Hence, the expression for sensitivity can be expressed as

Sensitivity ¼
qyðL; tÞ
qO3

, (58)

where yðL; tÞ is the torsional deflection at the free end of the beam. Using Eq. (52), Eq. (58) can be written as

Sensitivity ¼
Xn

j¼1

cjðLÞ
qqm

j

qO3
, (59)

where qm
j is the steady-state amplitude of the jth generalized coordinate qjðtÞ (for torsion). Since analytical

solution to expression (59) is almost impossible, numerical methods can be utilized to calculate the sensitivity
values given by Eq. (59). Consequently, one could approximate (59) with

Sensitivity ¼
Xn

j¼1

cjðLÞ
Dqm

j

DO3
. (60)
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Considering the base rotation range assumed here (0–70 rad/s), the sensitivity expression (60) is numerically
calculated at several distinct base rotation rates within this range and when taking the first two modes of
vibration in both bending and torsion. The summary of the results is given here; for O3 ¼ 20 rad/s,
Sensitivity ¼ 6:21 ns and for O3 ¼ 40 rad/s, Sensitivity ¼ 11:35 ns. As seen, the sensitivity almost doubles for
O3 ¼ 40 rad/s when compared to O3 ¼ 20 rad/s. It is interesting to note that these results also match the sensor
outputs for these two frequencies given in Fig. 7(d) for O3 ¼ 20 rad/s and Fig. 7(f) for O3 ¼ 40 rad/s. That is,
the higher the sense direction amplitude, the more sensitive gyroscope becomes.

5. Cross-axis effects

The vibrating beam gyroscope is used to measure the rotational rate around one of the axes. In practice,
however, there are always some secondary rotations present in the system. These secondary base rotations can
produce significant errors in measurement of the gyroscope output. These errors are referred to as ‘cross-axis’
effects. In this section, the effects of these secondary vibrations on the output of the gyroscope are discussed.

The base rotation along the longitudinal axes ðO1Þ is considered as the secondary rotations. Equations of
motion and boundary conditions for this case have been derived earlier (see Eqs. (27)–(32)).
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5.1. Simulations using AMM method

Similar to the procedure outlined in Section 4, the AMMmethod can be used to truncate the original partial
differential governing equations of motion to that of ordinary differential equations. The lateral displacement
w and torsional displacement y are assumed as linear functions of assumed modes and generalized coordinates
as shown in Eq. (52). The system governing equations can now be obtained by substituting Eq. (52) into
Eqs. (27) and (28) as follows:

M1 €pðtÞ þ CB _pðtÞ þ C1 _qðtÞO3 þ ðK1 þD1O2
3 �M1O2

1ÞpðtÞ þG1O1O3 ¼ F1,

M2 €qðtÞ þ CT _qðtÞ þ C2 _pðtÞO3 þ K2qðtÞ ¼ 0, ð61Þ

where

G1i ¼

Z L

0

rðxÞxfiðxÞdx; i ¼ 1; 2; . . . ; n (62)

and the rest of the coefficients have been defined in Eq. (57). Equations of motion given by Eq. (61) are solved
for the first two modes using MATLAB.
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System response with secondary base rotations: Fig. 10 depicts the output of the gyroscope when subjected to
primary ðO3Þ as well as secondary ðO1Þ base rotations of constant values. To analyze the ‘‘cross-axis’’ effects, the
magnitude of the secondary base rotation ðO1Þ is varied from 0–0.2 rad/s while keeping a constant piezoelectric
excitation voltage ðVp ¼ 300VÞ and primary base rotation ðO3 ¼ 20 rad/sÞ. As seen from Fig. 10(a), the
gyroscopic output is not affected when the secondary base rotation is zero. The torsional output produced by the
system, depicted in Fig. 10(a), is similar to the one shown in Fig. 7(d). Fig. 10(b–d) shows the gyroscopic output
of the system when the base has secondary rotations of very small magnitude (0.05–0.2 rad/s). It can be seen that
the gyroscopic output increases significantly even for such a small secondary rotation. This increased output
could be interpreted as a gyroscope output due to the primary base rotation and can hence produce errors in the
measurement. This is an important factor to take into account in the design of the vibrating beam gyroscope and
effective control strategies have to be developed to eliminate the ‘‘cross-axis’’ effects.

6. Conclusions

A detailed mathematical modeling of a vibrating beam gyroscope undergoing flexural–torsional vibrations
was presented in this paper. Furthermore, by simulating the system, the presence of the gyroscopic coupling
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Fig. 10. Cross-axis effect; system response (torsional deflection yðL; tÞÞ to different secondary base rotational rates (with O3 ¼ 20 rad=s):
(a) O1 ¼ 0 rad=s, (b) O1 ¼ 0:05 rad=s, (c) O1 ¼ 0:1 rad=s, and (d) O1 ¼ 0:2 rad=s.



ARTICLE IN PRESS
V. Bhadbhade et al. / Journal of Sound and Vibration 311 (2008) 1305–13241322
present in the system was validated. It was concluded that the magnitude of the gyroscopic coupling increases
with increase in the angular velocity as well as primary excitation amplitude. Finally, the effects of secondary
base rotations (cross-axis effects) on the gyroscopic output signals were presented. It was inferred that the
presence of cross-axis effects can produce significant errors in the gyroscopic output and efficient control
strategies have to be developed to reduce these effects.
Appendix A. Derivation of equations of motion

The extended Hamilton’s Principle is given asZ t2

t1

fdT � dV þ dWncgdt ¼ 0. (A.1)

Using the expressions for kinetic energy, potential energy and virtual work, and ignoring damping, different
components of Eq. (A.1) can be expressed as:

Kinetic energy: Z t2

t1

dTb dt ¼

Z t2

t1

Z L

0

½rðxÞðf df þ gdgþ hdhÞ þ IxbðxÞoxdox

þ IybðxÞoydoy þ IzbðxÞozdoz�dxdt. ðA:2Þ

Substituting values of f ; g; h;ox;oy and oz from Eqs. (3) and (22), Eq. (A.2) can be simplified as follows:Z t2

t1

dTb dt ¼

Z t2

t1

Z L

0
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� �

dxdt. ðA:3Þ

Integrating by parts, we getZ t2

t1

dTb dt ¼

Z t2

t1

Z L
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Simplifying and combining similar terms we getZ t2

t1

dTb dt ¼

Z t2

t1

Z L
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þ

Z t2

t1

Z L

0
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Total kinetic energy of the end mass is given as

TM ¼
1
2
ðMðf 2

M þ g2
M þ h2

MÞ þ ðIxMo2
x þ IyMo2

y þ IzMo2
zÞÞ. (A.6)

Taking the variation of the above expression yieldsZ t2

t1

dTM dt ¼

Z t2
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Substituting values of f M , gM , hM , ox, oy and oz from Eqs. (11) and (21), we can simplify the above
expression as follows:Z t2
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Potential energy:Z t2
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Simplifying and combining similar terms we getZ t2
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Virtual work is represented as

dWnc ¼
1

2

Z L

0

q2MP

qx2
dwdxþ CB

Z L

0

qw

qt
dwdxþ CT

Z L

0

qy
qt

dydx, (A.11)

where [18]

Mp ¼ �
1
2
bEpd31ðtb þ tpÞV pðtÞSðxÞ ¼Mp0V pðtÞSðxÞ, (A.12)

SðxÞ ¼ Hðx� l1Þ �Hðx� l2Þ.
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Using Eqs. (A.1)–(A.12) and taking into account the fact that dw, dy, dwL and ðq=qxÞdwL could have any
arbitrary values, the coefficients of these terms in Hamilton’s equation must vanish. Hence, after substituting
values of g,h,ox, oy, oz and ignoring rotary inertia for the beam, the equations of motion and boundary
conditions can be obtained as given in Eqs. (27)–(32).
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